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ANALYSIS AND CONVERGENCE OF THE MAC SCHEME. 
II. NAVIER-STOKES EQUATIONS 

R. A. NICOLAIDES AND X. WU 

ABSTRACT. The MAC discretization scheme for the incompressible Navier- 
Stokes equations is interpreted as a covolume approximation to the equations. 
Using some results from earlier papers dealing with covolume error estimates 
for div-curl equation systems, and under certain conditions on the data and the 
solutions of the Navier-Stokes equations, we obtain first-order error estimates 
for both the vorticity and the pressure. 

1. INTRODUCTION 

In a previous paper [4], the classical MAC scheme for viscous fluid flows was 
analyzed. It was proved that the scheme is first-order accurate in a discrete H1 
norm when applied to the stationary Stokes equations. To our knowledge, this 
is the first such analysis for the stationary problem. Earlier, Porsching [7] had 
considered the (nonlinear) evolution problem and obtained certain estimates. These 
estimates contain factors which are exponentially increasing with time and so are 
not immediately relevant to the stationary case. In this paper we extend the results 
of [4] to the stationary Navier-Stokes equations in two dimensions under hypotheses 
which ensure that the equations have a unique solution. 

The analysis which is presented below follows the general lines of [4] with al- 
lowance being made for the new difficulties caused by the nonlinear terms. Gen- 
erally, this paper is written so as to be independent of [4]. The MAC method is 
derived as a special case of the covolume formulation in [3]. 

In writing out the Navier-Stokes equations there are several possibilities for the 
form of the nonlinear term. The main ones are the standard u Vu form, the con- 
servative form div u x u and the total pressure form which in two space dimensions 
is u'w. We have chosen to present the analysis for the latter form. Our choice of 
the total pressure form is motivated in part by some recent numerical results [1], 
which show that at least in some cases it produces markedly superior results to the 
other two possibilities. The work in [6] contains some additional numerical results. 

2. MESH NOTATIONS 

Let Q be a bounded rectangular domain in R2 with boundary r. We will use 
a Cartesian mesh with x- and y-spacing equal to h and h'. To avoid unnecessary 
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complications, we will assume that h = h'. It is easy to modify the results to cover 
the contrary case. A staggered mesh is formed by connecting the centers of the 
rectangles (cells) to adjacent cell centers and to the midpoints of the boundary 
edges. The N nodes of the primal mesh are numbered 1, 2,. . ., N in some suitable 
way, and the T nodes of the dual mesh are similarly numbered 1, 2,.. ., T. The E 
edges (both primal and dual) are labeled 1, 2,. . ., E in some convenient way. The 
cells, edges and nodes of the primal mesh are denoted by Ti, uj and Vk, respectively. 
Those of the dual mesh are similarly denoted by primed quantities such as o?. A 
direction is assigned to each primal edge according to the rule that positive is from 
low to high node number. The dual edges are directed by the convention that 
(oj, oy) are oriented like the (x, y) axes of the coordinate system. 

Let n denote the normal direction of aj directed along ul. The discrete equations 
use the normal velocity components defined at the midpoint of oj as unknowns 
denoted by uj. The set of normal velocity components defined on edges can be 
identified with RE. We introduce an inner product into RE by 

(u,v)w:=E ujvj hhj, 
Uj EQ 

where hl is the length of u5, where hl = h if ol is an interior edge and h/2 if U; is 
on the boundary. The associated norm is denoted by fl .1w. Clearly, it is twice a 
discrete L2 norm. This inner product space is denoted by H. We denote by Ho the 
space 

Ho := {U E H; ulp = O}. 

We will also use a discrete LP norm; for u E RE it is defined by 
/ \l1/p 

IIUIIW,P = EIU;jIPhhj) 
aj Q I 

Scalar fields defined at the dual nodes vil can be identified with elements of RT. 
An inner product on RT is defined by 

(q,O)A := S Oi Ai, 
-;- EQ 

where Ai denotes the area of the ith cell. The associated norm is denoted by IfI fA. 
This inner product space is denoted by P. Similarly, scalar fields defined on the 
primal nodes Vk can be identified with elements of RN, and an inner product defined 
by 

(X) X)A' := E kXkA/O 
Irl EQ 

where A/ denotes the area of the kth dual cell. The norm is denoted by II I IA , and 
the inner product space by S, or by So if the boundary values are all zero. 

For each primal cell Ti, discrete flux and divergence operators are defined on H 
by 

(Du)i := ujh 
j E a&ri 
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and 

(Du) i :=(Du) i/Ai. 

By h we mean h negatively signed if the corresponding velocity component is di- 
rected towards the inside of Ti, and positively signed otherwise. 

For each interior dual cell Tkj discrete circulation and curl operators are defined 
by 

(CU)k uj 
k; T 

and 

(CU) k :=(CU) k/A/k 

The tilde here on hl means a negative sign if the dual edge is directed against the 
positive sense of description of 9Tk and a positive sign otherwise. 

Extensions of C and C to the boundary are denoted by Cb and Cb. In this case, 
the velocity components along the boundary segments defined by the intersections 
of consecutive dual mesh edges with r must be specified. 

We also introduce an operator R such that 

RV C RE (Rb)) h - k, V E Rn 

where the positive direction of oj is from vk1 to Vk2. An operator G is defined such 
that 

GXbE RE (Gq)3 hl2 1 Vq5ERT 

where the positive direction of c is from z{/ to 
When we deal with the approximations for certain items, we need to map the 

cell, edge, or kite (the parallelogram with oj and / as diagonals) to a standard 
one. We will use B to denote the mappings and a hat to denote the standard cell, 
edge, or kite. For example, -i' (-1/2 < < ? 1/2, -1/2 < < ? 1/2) is the image of 
Tkj- 

3. DISCRETIZATION OF NAVIER-STOKES EQUATIONS 

We consider the incompressible Navier-Stokes equations, 

(1) -v/\u + (u.V)u + Vp = f in Q, 

(2) divu=O inQ, 

(3) U1p = 0. 

We will discretize (1) in the form 

(4) -v/\u-u'w + V( + f 

where w = curl u and u' = (-u2, uI); u1 and u2 are the two velocity components of 
u. This form is often used in practice, and there is evidence that it can give better 
results than (1) or its momentum conservation form (div u x u). 
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Figure 1 shows two adjacent mesh cells, sharing the common edge oj (AB) and 
with dual edge ' (CD). Let n denote the positive direction of the o. Taking the 
dot product with n on both sides of (4), we get by a calculation 

(5) v - (curl u)-v 
a 

(div u) - utw + -P = fUn, 
at a~n an 

where t is the positive direction of o-i (AB) as shown in Figure 1 and p = p+ Iu 2/2. 
For convenience, we will denote the total pressure p by p from now on. We have left 
the divergence term in (5), even though according to (2) it is zero. There are two 
reasons why we feel that allowing this term to remain is significant. First, it reveals 
an important symmetry between the circulation and flux operator, in that they 
are seen to be analogous to the real and imaginary parts of a complex derivative. 
Second, by carrying the flux term through the analysis we are able to show how it 
may be estimated. Such estimates would be necessary if a nonzero divergence was 
prescribed or in circumstances when the divergence constraint is not met exactly. 

Integrating (5) over the primal edge oj, we get 

w(B) -w(A) 1 f &(div) d 
h hi~ &n 

(6) -~~~~~ j ~u.tw ds +. Jds !J fn ds, 
h a h J(jan h a 

where the positive direction is from A to B. For the discretization of this equation 
we replace w(A) and w(B) by the discrete curls w( and w'( at the nodes, approx- 
imate the normal derivative of div u by the finite difference of the discrete divs 
(Du)c and (DU)D at the centers C and D and use the average of w( and w'( to 
approximate the vorticity in the integral. Then we have 

B WA _ t(DU)D (DU)_ (WB4 + WA) PD PC=f (7) LI h h ' 2 + h 

where p' and p/ are the discrete pressure defined at the centers of the primal cells, 
fj is the right-hand side of (6) and ut is the tangential component computed as 

t8 j: Ua+Ub+Uc+Ud (8) U3 (fUja +Ujbl +"jC +u"id) 
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The tilde here means a positive sign if the corresponding dual edge (Ja?.... aj'%) 
has the same direction as oaj and a negative sign otherwise. Note that 

(9) llU'jW,p < IIulW,p for 2 < p < 00, 

where ut c RE is the tangential vector with uX as components. 
The discretization of the incompressibility condition and the boundary condition 

are similar; we have 

(10) Du = 0, 

(11) Ilir = utlr = ? 

Equation (7) contains a term w4 + wA for each primal edge. Regarded as an 
element of RE, the W norm of this vector can be estimated by 

fB + WA ||w < IIWBIIW + II[iA11w. 
The following lemma gives a relation between the W norm and A' norm of this 
vector. 

Lemma 1. Let w' and w[ denote the RE vectors which take the values of w' at the 
nodes corresponding to the positive and negative direction of the edges, respectively. 
Then 

(12) flw[1 112 + IIwI112f = 411f 112,. 

Proof. Let Ej (B) and Ej (A) denote the sets of primal edges with node vk as their 
high and low node numbers respectively. Then 

w /2 E: hhj. + Wk2 h hhj = W12 E: hh'. = 4w/2 A/ k4 > 3 hhj3 k+3 k>3 
Ej (B) Ej (A) Ej 

where Ej is the set of primal edges connected to node Vk. Taking the summation 
over all nodes, we get (12). 

Lemma 2. Assume u E lUo satisfies the equations 

Cu = W') 

Du = g, >3giAi = 0, 

ulr = O 

and 2 < p < oc. Then there exists a constant ar independent of h such that 

IIIUIIWp < ?( ojIIfYA' + 1g11A). 

Proof. Define a piecewise constant function with values wk in interior dual cells -rk 
and zero in the boundary dual cells. We will use the same notation w' for this 
function as for its values. Define a piecewise constant function which is a constant 
gi in cell ri and also denote this function by g. Consider the following problem: 

curl u* = w', 

div u* = g, g dxdy = 0, 

u* nIr = 0. 
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Define u* by 

u* = - iunds. 
2 h 

Then by [5, Theorem 6.1] we have 

IIu - U*IIw < Khlu* I ,Q 

Here and below, K denotes a generic constant. It follows that 

iu - u* liIp = E (uj 
- u*)Phhj 

A cQ 

/ \ p/2 

< K ( (Uj_-u*)2hh/h4/P-2) 
aj E/ 

- Kh2-p Iu_u* V. 

Thus, 

(13) IIu - U* IWp < h2/P-IIIU 
_ 

U* IIHW 
( ) ~~~~~~~~~< Kh 2/pIu*I1,Q. 

Define u E H by 

1 j u*.ndxdy, 

where -j is the kite area associated with o- and o/. By mapping Kj to a standard 
kite k, we can see that W-u is bounded on H1(k) and vanishes for constant 
functions. Then from standard approximation theory we have the estimate 

IIU* - U*Ilw < KhlU*|l,Q 

and therefore 

(14) IlU* - u*IlwP < Kh2/P Iu* I ,Q. 

On the other hand, 

u* n dxdy =| l* n dx 

?K(j )1/P 
< K (|, l*p) 

< Khj2/PHu*flo,, 

and then 

(15)lu* Wp < K (zh-211U*nIop'r h2 / 

(15)\ 
? Kllu*llo,p,Q 

? Kflu*fll,Q. 
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Combining (13), (14) and (15), we get 

u11lW,P ? lu - u*fllWp + flu* - u*flW,p + lu*fllWp 

< K||U*||1,Q- 

Since u* n vanishes on the boundary, flcurlu*H1o,Q + j1divu*flo,Q is a norm for 
H1(Q) and is equivalent to norm flU*'f1,c (see e.g. [2]). Therefore 

fluflw,p < K(WIcurlu*floQ + jldivu*flo,Q) 
< o(flW'f|A' + 11g11A), 

where a is a constant independent of h. C- 

Theorem 1. Let & = max{1, (72}, and assurme that the function f and the viscosity 
ii are such that 

16o-If lflw < 1 
2 <1 

V 

Then the discrete Navier-Stokes equations (7), (10) and (11) have a solution (u, p'). 
Here, u is unique and p' is unique apart from an additive constant. 

Proof. Introduce a space V defined by 

V := {v E Uo; Dv = 0} 

and a trilinear form a1 (u; v, w) defined by 

al(u; v, w) :=Eujvjwjhh'. 
O'j En 

Taking the inner product of v E V with equation (7) and using summation by parts, 
we have 

v(v, Rw')w - ai (ut; v, Mw') = (v,f ) w Vv E V, 
where the operator M is defined by (Mw')j := (w' + W&j)/2. 

For the existence of the discrete velocity u, let ur E V be given; we look for 
um+1 E V satisfying the iteration scheme 

v(v,Rw/?m+')w-ai(ut'm;v,Mw/m+l) = (v,f)w VV E V. 

It is easy to show that there is a unique um+1 satisfying this iteration scheme. Take 
v = uM+l; we have 

v(uM+1?, RW'/m+l)w - a1 (utrM; uM+1 , Mw/rM+1) = (um+? f )w 

and from Lemmas 1 and 2 we get 

v11wf,m+l1112, < jjMw/rm+lflw||um+lut,m| w + u m+1|wW HW 
? 2fllw flA' flu +ul| + oflW ?ll'+A' llf llw 

By (9) and Lemma 2 with p = 4 this leads to 

vflw'M+l ? 2A< um+1utrm11w + ullf Hlw 
< 21lum+ l|W,41lut'mliw,4 + ullf HIw 

< 21lum+fl|W,41lum11w,4 + ullf flw 

< 2 -jjnm+l |A'K||W)j |A' + 0flf ||w 



36 R. A. NICOLAIDES AND X. WU 

or 

(16) ||w , IWIA < V-21f llA v - 2o jwI,mjA' 

Taking w'"? such that c1W/' II A' < 2o 11f W/lV we conclude that 

(17) /,M+l ~~2ou1f lw (17) ~~~~~~Ilw! + IIA' <2 w 

Since w'm is bounded, by Lemma 2 with p = 2 we know that the sequence {Um} 
is also bounded. Since {um} is a sequence in RE, we may extract a subsequence 
{ums } which converges to u in RE. Therefore w',m converges to w' = Cbu and u 
satisfies 

(18) v(CbV,CbU)W-aj(ut;v,Mw) =(v,f)w Vv E V. 

By taking the limit in (17) we get a bound for w': 

(19) ||W A' <2of w 

To prove the uniqueness, let ui be another solution satisfying (18) and (19) and 
define E := u - t. By taking the difference of the two equations and setting v =, 
we have 

V(CbE, CbE)W - ai(ut; &, Mw') + a1(ft'; E, Mw ) = 0. 

Then using Lemmas 1 and 2, we get 

a,u<2 ; -, M(W' -w)) + a ' (u J(uj w 
< 211W' -W JIIA/IIU ?||W + 2||W ||AIj||(U' -U f)IIW 

? 2jjCbEjjA'IjjIW,4jjU IIW,4 + 2j|W |IA'II EIW,4jUU IW,4 

? 2u 0bEl | A' |ULW,4 2 + jjVI|A' ICbAIIA' |U-U W,4 

? 2o- 21Cb_1K2I(|w' ||A' + ||W IIA') 

< Cb A/ 

which implies ICbEllA, = 0 and therefore CbE = 0. Since DE = 0, by [5, Theorem 
5.3] we have u = it. 

We now prove the existence of the discrete pressure p'. Let 

rj :=v(Rw')j -ut (Mw')j -fj, j = I,., E 

Since (r, v)w = 0 for v E V, we have that r is orthogonal to V. By [5, Theorem 
5.3] we have 

io = V e W, 

where )/V = {u E Uo, Cu = 0}. Thus, r E W, and there exists a p' E RT such that 
r = Gp' ([5, Theorem 5.1]). Here, p' is unique up to a constant. O 
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4. VORTICITY ERROR ESTIMATE 

We will need the following lemma for estimating the vorticity error. 

Lemma 3. Assume that u E H2(Q) and w E H2(Q). Let WG and Wb denote the 
values of w defined at arbitrary points Pk, Qk E Tk (or ,j'). Then for h small enough 
we have 

IWa - WbIIAt < KhIU12,Q 

and 

IlWa - Wb l W < KhIU12,Q 

Proof. Let sk denote the unit vector in the direction of the segment rk = PkQk, 
and let r denote the image of rk in 'K. Then we have 

Iw(Qk) -W(Pk) i=J Qk : ds 

(2h)1/2 akOrk 

(9aSk o,rk 

< K 

1 S k4 

< K(|wll,Tk + hwI12,T) 

It follows that 

S W(Qk) -w(Pk)12h2 < Kh2(j1W1 + h21WI2). 
Tk EnQ 

Now choose h such that hlwl2,Q < jwjI,Q to obtain 

1/2 

EW(Qk) k) Ak < Kh|U12,Q, 

\T/ EnQ 

where K is a constant independent of h. The other estimate is similar. ED 

Theorem 2. Under the hypotheses of Theorem 1, and assuming that u E H2(Q), 
w E H2(Q) and 

4o_3 2allulIc(o)< ff= 
I lf IIW + IUI(Q<1 

the following estimate holds: 

1w' -WIIA'< K(u, p, f, v)h, 

where Cw E RN is the average of the vorticity over the dual cells, II011C(Q) is the usual 
sup norm and the constant K depends on I1UI2,Q, IP12,Q, Ilf 11w, and v but not 

on h. 
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Proof The exact solution of the Navier-Stokes equations satisfies 

curl u = w, 

div u = 0, 

u.nIr = 0. 

The discrete covolume solutions of the Navier-Stokes equations satisfy 

CbU = WI, 

Du= 0, 

ulr = 0. 

Let u(') be defined by 

u(l) u-n ds. 3 h 

For convenience, we use the following notations: 

O(P) E RE (u O0) P ds 

Z ERE, Zi :=hj utwds, 

Z' EE RE Z. :=u (MWI)j . 

Taking the difference of equation (6) and equation (7), we get 

v(R(w - w'))j .-(Z -Z ) + (At ( )) - (Gp')j = 0. 

Let ? := u(1)-u and assume that u(1) has zero tangential components on r. We 
have 

vRCbe= Z - Z- At +p Gp' - VR(w - Cu') ( an) 3 
and taking the inner product with ?, we conclude that 

v(?, RCbE)w = (?, Z-Z')w + (?, Gp')w- e, - ( ) 

- V(E, R(W - CbU(')))W. 

Using summation by parts, and since DE = 0, we have 

VjICbE6A = (E, Z-Z )W- E At ( i ) - Gp) - v(CbE, W- CbU1))A' 

< (E, Z - Z')WI + IEw l At () - Oji + V ICbHIA'11W - Cbu(1) |A, 
W 

< I(E, Z - Z')WI + ICbEIA (a At ( ) -Gp GP + UIW-CbU(1)IIAI), 

where p is the average of p over the primal cells defined by 

i j pdxdy. 
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For the nonlinear term, we have 

(ElZ- Z)w= (- utwds - u(Mw')j) hh' 

- 
E ?i | U.t(w - (Mwi)j)dshh[ 

+ E i J (u.t - u')(Mw')j dshh' 

=1 +12. 

For the first term we have 

I1 = S - J u.t(w - (Mw')j) dshh' 
(7jEQ a 

{(z 1~~~~~2 / 

< I ( ( ut(w - (Mw ()M)ds h) h ) 

(j En fw( Jf 

/ / 2 ~~~~~ 1/2/ 

+ 
E (-S | 

j (Mw - MCbU(1l)Ji ds) hh' ) 

+ (z (-| J (MCbU -hMw')h ds) hh) 

((jEn (h 
3 

< ILAlW lU C(Q) i~w - (Mw)j ds)hh) 

+ ||?|w|U||C(Q)(lM(W-Cbu(~ )lw + |M(CbU( ~W) - lw)) 

where 1IIC(Q) is the usual sup norm. Since w E H2(Q), there exists a point P3 E 

such that 

(Mw) =E 

and therefore there exists another point Q3 E oy such that 

w - (Mw)M ds= w(Q)- w(P). 
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Then from Lemma 3 we get 

( EQ (h l w - (Mw)j I ds) hh') < Kh|u12,Qi 

where K is a constant independent of h. Hence, we have the estimate for I1: 

11 < jjEjjwjjuIjc(Q)(KhjUj2Q + JIM(w-CbU(1)))Iw + JIM(Cbu(l) -w')IIw) 

< ?f|Cb?jj A||U ||C(Q) (Kh|Uj2,Q+ 21|IW-CbU( ) 11A' + 2jICbEIIA/). 

For the second term we have 

112= E ' J (u.t - u')(Mw')j dshh 
3Q 

h 
( 

K Mw' w ~~ W,4 ~ ~ u~)ds)hh) 1/4 

IIMWII(z (IW,4(U.t -u)d h 

Referring to the tangential components as defined by (8), we introduce 

3.:=4ua + uX b + ft il + fd )' 

where the tilde has the same meaning as in (8). Then we have 

(zsE, (1 j (u.t - u:t) ds) hh') < (u.t - uj) ds1 hh 

+ (, (-j(l (u)-)ds) hhji) 

It follows from standard approximation theory that 

1/4~~~~~~~/ 

(EQ~~~~ (-~d hh(t-j)s h) hl <Kh U 3 2, 

cT~~~~~ EQ~giE 

where K is a constant independent of h. From (9) we have 

Z( (hi%(ut 
- 

ul) ds) hhl) =< Kut1utw4 

K ds hh) - UllW,4 

< C|lCbEllA'. 

We now have the estimate for 12: 

1-21 <? ||Mw ||W||?||W,4(KhflU|j2,Q + O*flCbEflA') 

< 2|jW &J A'IICbEIjA'(KhIIUIj2,Q + IlCb?IIA'), 
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and the estimate for the nonlinear term becomes 

l(s, Z-Z ')I ? oICb?IIA'uIuIIC(Q)(KhIUl2,Q + 2|w|-CbU(1) IIA' + 2fICbII A') 

+ 2oIICbSIIA' |IW H|A' (KhIIUI12,Q + OIlCb?IIA') 

- 2oICb? 112 (HIUIIC(Q) + 11W HA') + KhflCb'EIA I1UHI2,QOIW IIA' 

+ KhICb6IIA hIUlI2,QIIUIIC(Q) + 2oI1CbEIIA' IIUlIC(Q) ||W-CbU(1 )IA'. 

Hence, 

vIICbeIA' < hICbIIA'(2c(IIuIIC(Q) + 2o2wlA) + o a n| (#) ) Gji 
w 

+ (v+ 2oIIuIIC(Q)IIw -CbU(' ),IA' + KhhIIuhI2Q(,(uhic(Q) + IUw IiA'), 

which leads to 

(20) IICbEIHA < v(I -) + v(I ) (lw -CbU( )lA' + | (an) - ) 

where 

4o-3 2oIIuIIC(Q) < 

By standard approximation theory, we have 

At - GP < Khlpl2,Q. 

Define U(2) and Cw by 

u( ):=h uunds, Wk =AT WI Vk E i2 

and follow the remark after [5, Theorem 6.1]; we have 

|IWC4 - CbU(1) IA' < Kh-1 IU(2) - U(1)l1w 

< Khflufl2,Q. 

Therefore, by standard approximation theory, we get 

||W - CbU(I) I|A' ? < |-W || A' + |W - CbU(1) I| A' 

< KhjU12,Q. 

Finally, we have the vorticity error estimate 

||W' - ||IIA' < l|Cb|llA A' + |w - CbU( ) ||A' 

< K(u, p, f, v)h, 

where K depends on IlUlI2,Q, IP12,Q, Ilf llw and v but not on h. This finishes the 
proof of Theorem 2. 0 
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5. PRESSURE ERROR ESTIMATE 

We begin by recalling the following standard result: 

Lemma 4. The equation 

divv = f E Lo(Q) 

has a solution v E Ho(Q) satisfying 

IIVII 1Q < Kllf Ijo,Q 

Proof. The proof of this lemma may be found in [2, p. 22]. O 

We will apply this result with 

f:=p--p EL2(Q) 

where the right side denotes the piecewise constant function with these values in 
each cell. Clearly, 

IIP- P11O,Q = IIP-P'llA, 

so that 

llVli1,Q < KjiP- P'IIA. 

Next, we introduce v(1) and v* defined as follows: 

v(l) j v.n ds, o- E 

v lI O' j v.nds, o' E Q. 

Use of the divergence theorem shows that 

Dv(') =jp-p'. 

In addition, we have 

1V(10)IW < KIIVII1,Q < KI P-P/IIA. 

Only the first inequality is new. To prove it, consider the linear functional 

Bv:= j vn ds. 
h , 

By mapping ij to a standard kite k, we have that Bv is bounded on H1 (k). Then 
mapping k back to Kj gives the result. 

Now we have 

(Cbv*)k= , j vtds = curlvdxdy, 
Akdktk k 

from which it follows that 

(21) IICbV 112, < IIcurlv112,Q < ?|V|12 Q < KIIKP-p'12 

We will need an estimate for IICbVV |Al. To obtain it, we first note the estimate 

IIV* -V(1)1W < Kh IIvII,Q. 
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The proof of this is given in [5]. Then 

jjCbV"' IIA' < lICb(V - V()) IA' + jjCbV IIA' 

K 
< h ||v -v(l)IIW + lICbV |A' 

<KII P'llIAi 

where (21) was used. 

Theorem 3. Under the assumptions of Theorems 1 and 2, we have the following 
estimate: 

IIP - PIIA < K(u, p, f, v)h, 

where-K depends on IIU I2,Q, IP!2,Q, lf llw and v but not on h. 

Proof. Taking the inner product of v(1) with the basic error equation gives 

(v(1), vR(w - w'))w - (v(1), Z - Z')w + (v(1), G(p - 

= (v(1),WGp-U (3)). 

Using summation by parts, we obtain 

IP- IA - (I)II |AT ||W-W |AT + IV( ) IIW {Gp-11 On, 

+ I/(VM z - Z)W l 

For the nonlinear term, similarly to the estimates of I1 and 12, we get 

|(V(1), Z - Z')| < V( IIWIIUIIC(Q)(Kh Uj2,Q + 2|w - CbUGO IA' + 21ICb?IIA') 

+2 211v() IIW,411 W ||A (Kh U |uI 2,Q + Of|jCbEj A'). 

Using (20) and the approximation error estimates, we have 

(v(1), Z - Z')j ? K(u,p, f, v)h(jjv(1) 11 w+ jIV(1)||W,4). 

To get a bound for IIV(1) IIW,4, we introduce v- E U defined on each ij by 

vli= jv.ndxdy. 

Clearly, - Vj is bounded on H' (k) and vanishes for constant functions. Then 

-v(1)-vj I < Klvli,, , 

and therefore 

IvM - V|| W,4< K 4v hh) 

(z ) ~~1/4 j v~ 
< Kh1/2 4Il,Q. 

? Khl/21VII,Q. 
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On the other hand, 

|vj|= 

4J fi di%dy < Kjv0,4,k, 

and therefore 

VflIIW,4< Kh 1/2 (zV14,sjhh') 

< KIV|O,4,Q 

< K||v||1,Q- 
Hence, we have 

IIV(1) 1W,4 < IIV(1) - IIW,4 + IVIIW,4 

< K||Vl|1,Q 

< -/IIA 

Then for the nonlinear term, we get 

{(V(),Z - Z')j < K(u,p,f,zv)hllp-PfIIA. 

Using the estimate for the vorticity and the approximation error estimates, we 
get the estimate for pressure, 

IIP-PIIA < K(u,p,f,v)h, 
where K depends on IJU I24Q, IP12,Q, lf llw and v but not on h. O 
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